¿Qué es la robótica?


La robótica es la rama de la tecnología que se dedica al diseño, construcción, operación, disposición estructural, manufactura y aplicación de los robots. La robótica combina diversas disciplinas como son: la mecánica, la electrónica, la informática, la inteligencia artificial, la ingeniería de control y la física. Otras áreas importantes en robótica son elálgebra, los autómatas programables, la animatrónica y las máquinas de estados.

El término robot se popularizó con el éxito de la obra RUR (Robots Universales Rossum), escrita por Karel Capek en 1920. En la traducción al inglés de dicha obra, la palabra checa robota, que significa trabajos forzados, fue traducida al inglés como robot.

La robótica ha estado unida a la construcción de “artefactos”, que trataban de materializar el deseo humano de crear seres semejantes a nosotros que nos descargasen del trabajo.


lunes, 9 de diciembre de 2013

Historia de la robótica

Por siglos, el ser humano ha construido máquinas que imitan partes del cuerpo humano. Los antiguos egipcios unieron brazos mecánicos a las estatuas de sus dioses; los griegos construyeron estatuas que operaban con sistemas hidráulicos, los cuales eran utilizados para fascinar a los adoradores de los templos.
El inicio de la robótica actual puede fijarse en la industria textil del siglo XVIII, cuando Joseph Jacquard inventa en 1801 una máquina textil programable mediante tarjetas perforadas. Luego, la Revolución Industrial impulsó el desarrollo de estos agentes mecánicos. Además de esto, durante los siglos XVII y XVIII en Europa fueron construidos muñecos mecánicos muy ingeniosos que tenían algunas características de robots. Jacques de Vauncansos construyó varios músicos de tamaño humano a mediados del siglo XVIII.En 1805, Henri Maillardert construyó una muñeca mecánica que era capaz de hacer dibujos.
La palabra robot se utilizó por primera vez en 1920 en una obra llamada "Los Robots Universales de Rossum", escrita por el dramaturgo checo Karel Capek. Su trama trataba sobre un hombre que fabricó un robot y luego este último mata al hombre. La palabra checa 'Robota' significa servidumbre o trabajado forzado, y cuando se tradujo al ingles se convirtió en el término robot.
Luego, Isaac Asimov comenzó en 1939 a contribuir con varias relaciones referidas a robots y a él se le atribuye el acuñamiento del término Robótica y con el surgen las denomidas "Tres Leyes de Robótica" que son las siguientes:
  1. Un robot no puede actuar contra un ser humano o, mediante la inacción, que un ser humano sufra daños.
  2. Un robot debe de obedecer las ordenes dadas por los seres humanos, salvo que estén en conflictos con la primera ley.
  3. Un robot debe proteger su propia existencia, a no ser que esté en conflicto con las dos primeras leyes.
Son varios los factores que intervienen para que se desarrollaran los primeros robots en la década de los 50's. La investigación en inteligencia artificial desarrolló maneras de emular el procesamiento de información humana con computadoras electrónicas e inventó una variedad de mecanismos para probar sus teorías. Las primeras patentes aparecieron en 1946 con los muy primitivos robots para traslado de maquinaria de Devol. También en ese año aparecen las primeras computadoras.En 1954, Devol diseña el primer robot programable.
En 1960 se introdujo el primer robot "Unimate'', basada en la transferencia de artículos.
En 1961 Un robot Unimate se instaló en la Ford Motors Company para atender una máquina de fundición de troquel.
En 1966 Trallfa, una firma noruega, construyó e instaló un robot de pintura por pulverización.
En 1971 El "Standford Arm'', un pequeño brazo de robot de accionamiento eléctrico, se desarrolló en la Standford University.
En 1978 Se introdujo el robot PUMA para tareas de montaje por Unimation, basándose en diseños obtenidos en un estudio de la General Motors.
Actualmente, el concepto de robótica ha evolucionado hacia los sistemas móviles autónomos, que son aquellos que son capaces de desenvolverse por sí mismos en entornos desconocidos y parcialmente cambiantes sin necesidad de supervisión.
En los setenta, la NASA inicio un programa de cooperación con el Jet Propulsión Laboratory para desarrollar plataformas capaces de explorar terrenos hostiles.
En la actualidad, la robótica se debate entre modelos sumamente ambiciosos, como es el caso del IT, diseñado para expresar emociones, el COG, tambien conocido como el robot de cuatro sentidos, el famoso SOUJOURNER o el LUNAR ROVER, vehículo de turismo con control remotos, y otros mucho mas específicos como el CYPHER, un helicóptero robot de uso militar, el guardia de trafico japonés ANZEN TARO o los robots mascotas de Sony.
En general la historia de la robótica la podemos clasificar en cinco generaciones :las dos primeras, ya alcanzadas en los ochenta, incluían la gestión de tareas repetitivas con autonomía muy limitada. La tercera generación incluiría visión artificial, en lo cual se ha avanzado mucho en los ochenta y noventas. La cuarta incluye movilidad avanzada en exteriores e interiores y la quinta entraría en el dominio de la inteligencia artificial en lo cual se esta trabajando actualmente.






Inteligencia artificial

La Inteligencia Artificial es una combinación de la ciencia del computador, fisiología y filosofía, tan general y amplio como eso, es que reune varios campos (robótica, sistemas expertos, por ejemplo), todos los cuales tienen en común la creación de máquinas que pueden pensar.

La de idea construir una máquina que pueda ejecutar tareas percibidas como requerimientos de inteligencia humana es un atractivo. Las tareas que han sido estudiadas desde este punto de vista incluyen juegos, traducción de idiomas, comprensión de idiomas, diagnóstico de fallas, robótica, suministro de asesoría experta en diversos temas.
Es así como los sistemas de administración de base de datos cada vez más sofisticados, la estructura de datos y el desarrollo de algoritmos de inserción, borrado y locación de datos, así como el intento de crear máquinas capaces de realizar tareas que son pensadas como típicas del ámbito de la inteligencia humana, acuñaron el término Inteligencia Artificial en 1956.

La Inteligencia Artificial trata de conseguir que los ordenadores simulen en cierta manera la inteligencia humana. Se acude a sus técnicas cuando es necesario incorporar en un sistema informático,conocimiento o características propias del ser humano.

Podemos interrogar a algunas bases de datos de Internet en lenguaje natural, o incluso charlar con ellas nuestro idioma, porque por detrás se está ejecutando un programa de Inteligencia Artificial.

Otras herramientas inteligentes pueden utilizarse para escrutar entre los millones de datos que se generan en un banco en busca de patrones de comportamiento de sus clientes o para detectar tendencias en los mercados de valores.


Características de la Inteligencia Artificial.

  1. Una característica fundamental que distingue a los métodos de Inteligencia Artificial de los métodos numéricos es el uso de símbolos no matemáticos, aunque no es suficiente para distinguirlo completamente. Otros tipos de programas como los compiladores y sistemas de bases de datos,tambiénprocesan símbolos y no se considera que usen técnicas de Inteligencia Artificial.
  2. El comportamiento de los programas no es descrito explícitamente por el algoritmo. La secuencia de pasos seguidos por el programa es influenciado por el problema particular presente. El programa especifica cómo encontrar la secuencia de pasos necesarios para resolver un problema dado (programa declarativo). En contraste con los programas que no son de Inteligencia Artificial, que siguen un algoritmo definido, que especifica, explícitamente, cómo encontrar las variables de salida para cualquier variable dada de entrada (programa de procedimiento).
  3. Las conclusiones de un programa declarativo no son fijas y son determinadas parcialmente por las conclusiones intermedias alcanzadas durante las consideraciones al problema específico. Los lenguajes orientados al objeto comparten esta propiedad y se han caracterizado por su afinidad con la Inteligencia Artificial.
  4. El razonamiento basado en el conocimiento, implica que estos programas incorporan factores y relaciones del mundo real y del ámbito del conocimiento en que ellos operan. Al contrario de los programas para propósito específico, como los de contabilidad y cálculos científicos; los programas de Inteligencia Artificial pueden distinguir entre el programa de razonamiento o motor de inferencia y base de conocimientos dándole la capacidad de explicar discrepancias entre ellas.
  5. Aplicabilidad a datos y problemas mal estructurados, sin las técnicas de Inteligencia Artificial los programas no pueden trabajar con este tipo de problemas. Un ejemplo es la resolución de conflictos en tareas orientadas a metas como en planificación, o el diagnóstico de tareas en un sistema del mundo real: con poca información, con una solución cercana y no necesariamente exacta.
Diferentes metodologías:

1.La lógica difusa: permite tomar decisiones bajo condiciones de incerteza.

2.Redes neuronales: esta tecnología es poderosa en ciertas tareas como la clasificación y el reconocimiento de patrones. Está basada en el concepto de "aprender" por agregación de un gran número de muy simples elementos.

Este modelo considera que una neurona puede ser representada por una unidad binaria: a cada instante su estado puede ser activo o inactivo. La interacción entre las neuronas se lleva a cabo a través de sinapsis. Según el signo, la sinapsis es excitadora o inhibidora.
El perceptrón está constituido por las entradas provenientes de fuentes externas, las conexiones y la salida. En realidad un perceptrón es una Red Neuronal lo más simple posible, es aquella donde no existen capas ocultas.

Para cada configuración de los estados de las neuronas de entrada (estímulo) la respuesta del perceptrón obedece a la siguiente dinámica: se suman los potenciales sinápticos y se comparan con un umbral de activación. Esta suma ponderada es también llamada campo. Si el campo es mayor que un umbral, la respuesta de la neurona es activa, si no, es inactiva.
Con una arquitectura tan simple como la del perceptrón no se puede realizar más que una clase de funciones "booleanas" muy simples, llamadas linealmente separables. Son las funciones en las cuales los estados de entrada con salida positiva pueden ser separados de aquellos a salida negativa por un hiperplano. Unhiperplano es el conjunto de puntos en el espacio de estados de entrada, que satisfacen una ecuación lineal. En dos dimensiones, es una recta, en tres dimensiones un plano, etc.

Si se quieren realizar funciones más complejas con Redes Neuronales, es necesario intercalar neuronas entre las capas de entradas y de salida, llamadas neuronas ocultas. Una red multicapas puede ser definida como un conjunto de perceptrones, ligados entre si por sinapsis y dispuestos en capas siguiendo diversas arquitecturas. Una de las arquitecturas más comúnmente usada es llamadafeedforward: con conexiones de la entrada a las capas ocultas y de éstas hacia la salida.
El funcionamiento de una Red Neuronal es gobernado por reglas de propagación de actividades y de actualización de los estados.


Experiencia, Habilidades y Conocimiento

Los tipos de experiencia que son de interés en los sistemas basados en
conocimiento, pueden ser clasificados en tres categorías: asociativa, motora y teórica.

Los sistemas basados en conocimiento son excelentes para representar conocimiento asociativo. Este tipo de experiencia refleja la habilidad heurística o el
conocimiento que es adquirido mayoritariamente, a través de la observación. Puede ser que no se comprenda exactamente lo que ocurre al interior de un sistema (caja negra), pero se pueden asociar entradas o estímulos con salidas o respuestas, para resolver problemas que han sido previamente conocidos.

La experiencia motora es más física que cognitiva. La habilidad se adquiere fundamentalmente a través del ejercicio y la práctica física constante. Los sistemas basados en 
conocimiento no pueden emular fácilmente este tipo de experiencia, principalmente por la limitada capacidad de la tecnología robótica.

La experiencia teórica y el 
conocimiento profundo permite que los humanos puedan resolver problemas que no se han visto antes, es decir, no existe una posibilidad asociativa. El conocimiento teórico y profundo se adquiere a través de estudio y entrenamiento formal, así como por medio de la resolución directa de problemas.

Debido a su naturaleza teórica, este 
conocimiento se puede olvidar fácilmente, a no ser que se use en forma continua. Al momento, los sistemas convencionales basados en conocimiento tienen muchas dificultades para duplicar este tipo de experiencia. Sin embargo, los Sistemas de Razonamiento Basado en Modelos representan un notable intento de encapsular este conocimiento profundo y razonarcon él.



Domótica

La domótica es el conjunto de tecnologías aplicadas al control y la automatización inteligente de la vivienda, que permite una gestión eficiente del uso de la energía, además de aportar seguridad, confort, y comunicación entre el usuario y el sistema.
Un sistema domótico es capaz de recoger información proveniente de unos sensores o entradas, procesarla y emitir órdenes a unos actuadores o salidas. El sistema puede acceder a redes exteriores de comunicación o información.
La domótica aplicada a edificios no destinados a vivienda, es decir oficinas, hoteles, centros comerciales, de formación, hospitales y terciario, se denomina, inmótica.
La domótica permite dar respuesta a los requerimientos que plantean estos cambios sociales y las nuevas tendencias de nuestra forma de vida, facilitando el diseño de casas y hogares más humanos, más personales, polifuncionales y flexibles.
El sector de la domótica ha evolucionado considerablemente en los últimos años, y en la actualidad ofrece una oferta más consolidada. Hoy en día, la domótica aporta soluciones dirigidas a todo tipo de viviendas, incluidas las construcciones de vivienda oficial protegida. Además, se ofrecen más funcionalidades por menos dinero, más variedad de producto, y gracias a la evolución tecnológica, son más fáciles de usar y de instalar. En definitiva, la oferta es mejor y de mayor calidad, y su utilización es ahora más intuitiva y perfectamente manejable por cualquier usuario. Paralelamente, los instaladores de domótica han incrementado su nivel de formación y los modelos de implantación se han perfeccionado. Asimismo, los servicios posventa garantizan el perfecto mantenimiento de todos los sistemas. En definitiva, la domótica de hoy contribuye a aumentar la calidad de vida, hace más versátil la distribución de la casa, cambia las condiciones ambientales creando diferentes escenas predefinidas, y consigue que la vivienda sea más funcional al permitir desarrollar facetas domésticas, profesionales, y de ocio bajo un mismo techo.
La red de control del sistema domótico se integra con la red de energía eléctrica y se coordina con el resto de redes con las que tenga relación: telefonía, televisión, y tecnologías de la información, cumpliendo con las reglas de instalación aplicables a cada una de ellas. Las distintas redes coexisten en la instalación de una vivienda o edificio. La instalación interior eléctrica y la red de control del sistema domótico están reguladas por el Reglamento Electrotécnico para Baja Tensión (REBT). En particular, la red de control del sistema domótico está regulada por la instrucción ITC-BT-51 Instalaciones de sistemas de automatización, gestión técnica de la energía y seguridad para viviendas y edificios.
¿QUÉ APORTA LA DOMÓTICA?
La domótica contribuye a mejorar la calidad de vida del usuario:
  • Facilitando el ahorro energético: gestiona inteligentemente la iluminación, climatización, agua caliente sanitaria, el riego, los electrodomésticos, etc., aprovechando mejor los recursos naturales, utilizando las tarifas horarias de menor coste, y reduce de esta manera la factura energética. Además, mediante la monitorización de consumos, se obtiene la información necesaria para modificar los hábitos y aumentar el ahorro y la eficiencia.
  • Fomentando la accesibilidad: facilita el manejo de los elementos del hogar a las personas con discapacidades de la forma que más se ajuste a sus necesidades, además de ofrecer servicios de teleasistencia para aquellos que lo necesiten.
  • Aportando seguridad de personas, animales y bienes: controles de intrusión y alarmas técnicas que permiten detectar incendios, fugas de gas o inundaciones de agua, etc.
  • Convirtiendo la vivienda en un hogar más confortable: gestión de electrodomésticos, climatización, ventilación, iluminación natural y artificial…
  • Garantizando las comunicaciones: recepción de avisos de anomalías e información del funcionamiento de equipos e instalaciones, gestión remota del hogar, etc.
Además, la domótica facilita la introducción de infraestructuras y la creación de escenarios que se complementan con los avances en la Sociedad de la Información:
  • Comunicaciones: Transmisión de voz y datos, incluyendo textos, imágenes, sonidos (multimedia) con redes locales (LAN) compartiendo acceso a Internet, recursos e intercambio entre todos los dispositivos, acceso a nuevos servicios de telefonía sobre IP, televisión digital, televisión por cable, diagnóstico remoto, videoconferencias, etc.
  • Mantenimiento: Con capacidad de incorporar el telemantenimiento de los equipos.
  • Ocio y tiempo libre: Descansar y divertirse con radio, televisión, multi-room, cine en casa, videojuegos, captura, tratamiento y distribución de imágenes fijas (foto) y dinámicas (vídeo) y de sonido (música) dentro y fuera de la casa, a través de Internet, etc.
  • Salud: Actuar en la sanidad mediante asistencia sanitaria, consultoría sobre alimentación y dieta, telecontrol y alarmas de salud, medicina monitorizada, cuidado médico, etc.
  • Compra: Comprar y vender mediante la telecompra, televenta, telereserva, desde la casa, etc. y Finanzas: Gestión del dinero y las cuentas bancarias mediante la telebanca, consultoría financiera….
  • Aprendizaje: Aprender y reciclarse mediante la tele-enseñanza, cursos a distancia…
  • Actividad profesional: Trabajar total o parcialmente desde el hogar, posibilidad viable para ciertas profesiones (teletrabajo) , etc.
  • Ciudadanía: Gestiones múltiples con la Administración del Estado, la Comunidad Autónoma y el Municipio, voto electrónico, etc.
  • Acceso a información: Museos, bibliotecas, libros, periódicos, información meteorológica, etc.

martes, 12 de noviembre de 2013

Sensores en robótica


Introducción:

Una parte importante a la hora de construir un robot es la incorporación de sensores. Los sensores trasladan la información desde el mundo real al mundo abstracto de los microcontroladores. En este documento se explican los conceptos fundamentales de los sensores mas comúnmente usados. Valores de salida de los sensores: Los sensores ayudan a trasladar los atributos del mundo físico en valores que la controladora de un robot puede usar. En general, la mayoría de los sensores pueden ser divididos en dos grandes grupos:

1. Sensores analógicos

2. Sensores Digitales

Sensores Analógicos:
Un sensor analógico es aquel que puede entregar una salida variable dentro de un determinado rango (ver figura de la derecha). Un Sensor analógico, como por ejemplo una Fotorresistencia (estos componentes miden intensidad de luz), puede ser cableado en un circuito que pueda interpretar sus variaciones y entregar una salida variable con valores

entre 0 y 5 volts.
Sensores Digitales:

Un sensor digital es aquel que entrega una salida del tipo discreta (ver figura de la izquierda). Es decir, que el sensor posee una salida que varía dentro de un determinado rango de valores, pero a diferencia de los

sensores analógicos, esta señal varía de a pequeños pasos pre-establecidos.Por ejemplo consideremos un botón pulsador, el cual es uno de los sensores más básicos. Posee una salida discreta de tan solo dos valores, estos pueden ser abierto o cerrado. Otros sensores discretos pueden entregar una salida del tipo binario, como es el caso de un conversor Analógico/Digital, el cual entrega una salida de 8 bits capaz de

subdividir las variaciones de la entrada en hasta 256 escalones.


Los sensores discretos mas comúnmente usados en robótica entregan una salida del tipo binaria las cuales poseen dos estados posibles (0 y 1). De aquí en adelante asumiremos que una salida digital es una salida del tipo binaria. La distinción entre analógico y digital es muy importante a la hora de tomar la decisión para determinar que sensores se usarán. Esta decisión depende en gran medida de la capacidad y características de la controladora que se usará. Conversión Analógica/Digital:

Los microcontroladores generalmente operan con valores discretos. Los controladores como el Motorola 68HC11, el PIC 16F84, etc., trabajan con valores binarios de 8 bits. Una parte importante a la hora de trabajar con señales analógica es la posibilidad de transformar las mismas en señales digitales mediante el uso de un conversor A/D (analógico/digital) y entregar su salida sobre un bus de 8 bits (1 Byte). Esto permitirá al

microcontrolador poder tomar decisiones en base a la lectura obtenida. Cabe destacar que en la actualidad existen microcontroladores que ya poseen este conversor integrado en si mismos, lo que permite ahorrar espacio y simplificar el diseño.

En la siguiente figura se puede ver un ejemplo de como se comportaría un conversorA/D (analógico/digital):

Voltaje entre
(v)
Valor de Salida

(binario)

Valor de salida

(decimal)

0.0000 0.0195 00000000 0

0.0195 0.0391 00000001 1

0.0391 0.0586 00000010 2

0.0586 0.0781 00000011 3

0.0781 0.0977 00000100 4

Podemos ver como para distintos rangos de valores de valores de entrada, se obtiene un valor de salida binario. Si nuestro rango de entrada está entre 0 y 5 volts, un conversor A/D de 8 bits podrá dividir la tensión de entrada en 256 valores binarios. Esto resulta en un escalón de 0.0195 volts. Esto se puede ver claramente en la tabla anterior, si bien solo están representados los primeros cinco niveles.El gráfico anterior muestra el resultado de una conversión A/D para 14 muestreos. El número del muestreo es mostrado en el eje X en la parte inferior. El lado izquierdo del eje Y indica el voltaje de la entrada analógica que está siendo muestreada. Sobre el lado derecho del eje Y podemos ver el valor digital de 8 bits asignado a cada punto del muestreo. (visto en formato decimal).
Existen una gran variedad de conversores A/D en el mercado. Los de 8 bits se usan comúnmente con microcontroladores, pero también existen de 10 bits, capaces de tomar hasta 1024 muestras. Y de 12 bits, capaces de tomar hasta 65356 muestras. A mayor cantidad de muestras mayor será la precisión obtenida, por lo que la elección del conversor A/D adecuado dependerá de que tan exacto deberá ser nuestra lectura del sensor. Sensores Analógicos mas frecuentes:

Recuerde que para usar con éxito un sensor analógico, deberá poseer alguna forma de convertir la salida generada por este en una señal digital capaz de ser interpretada por un sistema microcontrolado.

Todos los circuitos mostrados en esta sección están pensados para ser usados conectándolos a un conversor A/D. Recuerde que muchos microcontroladores ya traen integrado estos conversores, en caso

contrario se deberá agregar externamente uno como por ejemplo el ADC0801 de National Semiconductores (http://www.national.com/) o similares.

Fotorresistencia:

Estos fotorresistores (también llamados LDR) poseen la capacidad de variar su valor acorde a la cantidad de luz que incide sobre ellos. El LDR mostrado como P1 en el diagrama de la izquierda posee una resistencia de 10K operando con una iluminación intermedia. Junto con R1 que también es de 10K, producen un divisor resistivo. La tensión medida en el punto medio de este divisor variará según varíe la luz que incida sobre

el LDR. Debido a que el valor resistivo del LDR decrece a medida que la luz aumenta, en consecuencia la tensión en el punto medio disminuirá también a medida que la luz aumente y viceversa. A modo de ejemplo supongamos que hay suficiente iluminación para llevar el valor del LDR a 2K. En este caso la tensión medida en el punto medio (considerando VCC=5v) sería:

V= P1*(VCC/(P1+R1))

Entonces V=2K*(5/(2K+10K))= 0.83v

Si la salida del punto medio la transformáramos a Digital mediante el Conversor A/D comentado anteriormente obtendríamos una lectura aproximadamente igual a 42 en decimal (2A Hexadecimal). Lo cual podría ser perfectamente interpretado por un sistema microcontrolado y de esta forma poder medir la intensidad de luz presente. Potenciómetros:

Otro sensor muy comúnmente usado y que a veces no se lo considera es el clásico potenciómetro. Estos son muy útiles para medir movimientos y determinar la posición de un mecanismo determinado como por ejemplo el eje de una articulación de un brazo mecánico. Debido a que los potenciómetros poseen un ángulo de giro de aproximadamente 270°, no es posible usarlos en mecanismos que deben realizar un giro completo o bien mas de una vuelta sobre su eje. Como se aprecia en el diagrama, la forma de conexión es similar al caso del LDR, con la simple diferencia que en este caso el Potenciómetro es un divisor resistivo en si mismo y R3 se usa

como simple limitador de corriente. Los valores son a modo de ejemplo

y pueden usarse cualquier valor dentro de rangos aceptables. No

muy bajos para no provocar un elevado consumo (10K es lo mas

bajo recomendable) y no muy elevado ya que la corriente sería

demasiado baja (no mas de 1.5M).Existen dos tipos de potenciómetros en  el mercado: Lineares y Logarítmicos (estos últimos usados normalmente en audio). Los del tipo linear varían su valor en forma constante (linealmente), los del tipo logarítmicos poseen una curva de variación del tipo logarítmica, esto es decir que su valor aumenta lentamente en los extremos y luego los valores cambian cada vez mas rápidamente. Los mas recomendados a la hora de sensar posiciones de mecanismos son los del tipo linear.Sensores Digitales de uso general: Existe una gran variedad de sensores digitales. Muchos de ellos se conectan en forma similar, la cual es haciendo uso de una resistencia de Pull-Up conectada a VCC para mantener la entrada forzada a nivel alto, con lo cual el sensor la forzaría a nivel bajo cuando se active. Switch o llaves: Uno de los sensores mas básicos son los switch (llaves o pulsadores). En la siguiente figura se puede apreciar el conexionado clásico de un switch a una entrada digital:

Para evitar pulsos de rebote al accionar el switch se puede usar un capacitor de bajo valor (0.1uF a 1uF) en paralelo con los bornes del switch. Microswitch:

Un tipo de switch muy útil en robótica es el microswitch como el que se puede apreciar en la siguiente figura: Al presionar la lámina, el borne común C pasa a conectarse con el borne activado A. Si la lámina no está presionada, el borne C está unido con R (reposo). En la práctica el borne R viene identificado como NC (normal closed) y el borne Aviene identificado como NO (normal open) .La forma de conectar un microswitch a una entrada digital es la misma usada para todo tipo de switch (ver punto anterior). En la siguiente figura podemos ver uno de los usos característicos de estos microswitch:

En este ejemplo se los utiliza para la detección de obstáculos en un pequeño robot. Sensores infrarrojos optoacoplados:

Existen dos tipos de sensores infrarrojos: reflectivo y de ranura. En ambos casos estos se basan en un conjunto formado por un fototransistor (transistor activado por luz) y un LED infrarrojo. Reflectivo: Este tipo de sensor presenta una cara frontal en la cual se encuentran tanto el LED como el Fototransistor. Debido que no están colocados en forma

enfrentada, la única forma posible para que la luz generada por el LED active el Fototransistor es haciendo reflejar esta luz en una superficie reflectiva. Teniendo en cuenta esto, estos sensores son muy útiles para detectar por ejemplo una línea negra sobre una superficie blanca o viceversa. Debido a que el fototransistor es afectado no solo por la luz del diodo sino por la luz ambiental, se deben desarrollar circuitos de filtrado para evitar una falsa activación debido a la luz ambiente.De Ranura: En este tipo de sensor, ambos elementos (LED y Fototransistor) se encuentran alineados a la misma altura enfrentados a través de la ranura. El fototransistor se encontrará activado siempre que no se

introduzca ningún elemento que obture la ranura. En la figura de la izquierda se aprecia un uso clásico para este tipo de sensores. El motor posee un disco rasurado acoplado a su eje. De esta forma podemos detectar el movimiento del motor, ya que al girar irá obturando y liberando el haz de luz entre el LED y el Fototransistor. En la siguiente figura se aprecia un conexionado típico para este tipo de sensores. En el

caso del reflectivo se debería además modular el encendido del LED para luego poder realizar el filtrado necesario para evitar la activación por luz ambiente.Sensor de Efecto Hall:

Otro sensor muy útil y simple de usar es el de efecto Hall. Se trata de un semiconductor que actúa como detector de proximidad al enfrentarse al polo sur de un imán. Utilizando el efecto Hall para proporcionar una conmutación sin rebotes. La distancia a la que produce la conmutación el campo magnético del imán es de alrededor de 2mm (dependiendo del modelo usado). Son muy usados en circuitos lógicos en donde se precisa conmutar sin que se produzcan rebotes, o en donde se quiera evitar el contacto mecánico. Como por ejemplo es posible realizar un circuito que mida las revoluciones a la que está girando una rueda.

Resumen: Estos son solo algunos de los sensores mas comúnmente usados en robótica debido a su practicidad y bajo costo. Existen muchos otros un poco mas sofisticados, como ser los transmisores y receptores ultrasónicos, con los cuales se pueden construir sistemas de sonar muy útiles a la hora de detectar objetos a distancia y así poder esquivarlos sin necesidad de tomar contacto con ellos. 

miércoles, 30 de octubre de 2013

Clasificación de los robots

Según su cronología

La que a continuación se presenta es la clasificación más común:
  • 1ª Generación.
Manipuladores. Son sistemas mecánicos multifuncionales con un sencillo sistema de control, bien manual, de secuencia fija o de secuencia variable.


  • 2ª Generación.
Robots de aprendizaje. Repiten una secuencia de movimientos que ha sido ejecutada previamente por un operador humano. El modo de hacerlo es a través de un dispositivo mecánico. El operador realiza los movimientos requeridos mientras el robot le sigue y los memoriza.
  • 3ª Generación.
Robots con control sensorizado. El controlador es una computadora que ejecuta las órdenes de un programa y las envía al manipulador para que realice los movimientos necesarios.
  • 4ª Generación.
Robots inteligentes. Son similares a los anteriores, pero además poseen sensores que envían información a la computadora de control sobre el estado del proceso. Esto permite una toma inteligente de decisiones y el control del proceso en tiempo real.

  • 5ª Generación.
La siguiente generaciónsera una nueva tegnología que incorpora 100% inteligencia artificial y utilizara modelos  de conducta y una nueva arquitectura de subsumción.

Esta estapa depende totalmente de la nueva generación de jóvenes interesados en robótica, una nueva era de robots nos espera.


Según su estructura

La estructura, es definida por el tipo de configuración general del Robot, puede ser metamórfica. El concepto de metamorfismo, de reciente aparición, se ha introducido para incrementar la flexibilidad funcional de un Robot a través del cambio de su configuración por el propio Robot. El metamorfismo admite diversos niveles, desde los más elementales (cambio de herramienta o de efecto terminal), hasta los más complejos como el cambio o alteración de algunos de sus elementos o subsistemas estructurales. Los dispositivos y mecanismos que pueden agruparse bajo la denominación genérica del Robot, tal como se ha indicado, son muy diversos y es por tanto difícil establecer una clasificación coherente de los mismos que resista un análisis crítico y riguroso. La subdivisión de los Robots, con base en su arquitectura, se hace en los siguientes grupos: poliarticulados, móviles, androides, zoomórficos e híbridos.
  • 1. Poliarticulados
En este grupo se encuentran los Robots de muy diversa forma y configuración, cuya característica común es la de ser básicamente sedentarios (aunque excepcionalmente pueden ser guiados para efectuar desplazamientos limitados) y estar estructurados para mover sus elementos terminales en un determinado espacio de trabajo según uno o más sistemas de coordenadas, y con un número limitado de grados de libertad. En este grupo, se encuentran los manipuladores, los Robots industriales, los Robots cartesianos y se emplean cuando es preciso abarcar una zona de trabajo relativamente amplia o alargada, actuar sobre objetos con un plano de simetría vertical o reducir el espacio ocupado en el suelo.
  • 2. Móviles
Son Robots con gran capacidad de desplazamiento, basados en carros o plataformas y dotados de un sistema locomotor de tipo rodante. Siguen su camino por telemando o guiándose por la información recibida de su entorno a través de sus sensores. Estos Robots aseguran el transporte de piezas de un punto a otro de una cadena de fabricación. Guiados mediante pistas materializadas a través de la radiación electromagnética de circuitos empotrados en el suelo, o a través de bandas detectadas fotoeléctricamente, pueden incluso llegar a sortear obstáculos y están dotados de un nivel relativamente elevado de inteligencia.
  • 3. Androides
Son Robots que intentan reproducir total o parcialmente la forma y el comportamiento cinemática del ser humano. Actualmente, los androides son todavía dispositivos muy poco evolucionados y sin utilidad práctica, y destinados, fundamentalmente, al estudio y experimentación. Uno de los aspectos más complejos de estos Robots, y sobre el que se centra la mayoría de los trabajos, es el de la locomoción bípeda. En este caso, el principal problema es controlar dinámica y coordinadamente en el tiempo real el proceso y mantener simultáneamente el equilibrio del Robot.
  • 4. Zoomórficos
Los Robots zoomórficos, que considerados en sentido no restrictivo podrían incluir también a los androides, constituyen una clase caracterizada principalmente por sus sistemas de locomoción que imitan a los diversos seres vivos. A pesar de la disparidad morfológica de sus posibles sistemas de locomoción es conveniente agrupar a los Robots zoomórficos en dos categorías principales: caminadores y no caminadores. El grupo de los Robots zoomórficos no caminadores está muy poco evolucionado. Los experimentos efectuados en Japón basados en segmentos cilíndricos biselados acoplados axialmente entre sí y dotados de un movimiento relativo de rotación. Los Robots zoomórficos caminadores multípedos son muy numerosos y están siendo objeto de experimentos en diversos laboratorios con vistas al desarrollo posterior de verdaderos vehículos terrenos, piloteados o autónomos, capaces de evolucionar en superficies muy accidentadas. Las aplicaciones de estos Robots serán interesantes en el campo de la exploración espacial y en el estudio de los volcanes.

  • 5. Híbridos
Corresponden a aquellos de difícil clasificación, cuya estructura se sitúa en combinación con alguna de las anteriores ya expuestas, bien sea por conjunción o por yuxtaposición. Por ejemplo, un dispositivo segmentado articulado y con ruedas, es al mismo tiempo, uno de los atributos de los Robots móviles y de los Robots zoomórficos.